3.5.19 \(\int x^2 \sqrt {d-c^2 d x^2} (a+b \cosh ^{-1}(c x))^n \, dx\) [419]

Optimal. Leaf size=253 \[ -\frac {\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^{1+n}}{8 b c^3 (1+n) \sqrt {-1+c x} \sqrt {1+c x}}+\frac {2^{-2 (3+n)} e^{-\frac {4 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c^3 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {2^{-2 (3+n)} e^{\frac {4 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac {4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c^3 \sqrt {-1+c x} \sqrt {1+c x}} \]

[Out]

-1/8*(a+b*arccosh(c*x))^(1+n)*(-c^2*d*x^2+d)^(1/2)/b/c^3/(1+n)/(c*x-1)^(1/2)/(c*x+1)^(1/2)+(a+b*arccosh(c*x))^
n*GAMMA(1+n,-4*(a+b*arccosh(c*x))/b)*(-c^2*d*x^2+d)^(1/2)/(2^(6+2*n))/c^3/exp(4*a/b)/(((-a-b*arccosh(c*x))/b)^
n)/(c*x-1)^(1/2)/(c*x+1)^(1/2)-exp(4*a/b)*(a+b*arccosh(c*x))^n*GAMMA(1+n,4*(a+b*arccosh(c*x))/b)*(-c^2*d*x^2+d
)^(1/2)/(2^(6+2*n))/c^3/(((a+b*arccosh(c*x))/b)^n)/(c*x-1)^(1/2)/(c*x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.24, antiderivative size = 253, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {5952, 5556, 3388, 2212} \begin {gather*} \frac {2^{-2 (n+3)} e^{-\frac {4 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text {Gamma}\left (n+1,-\frac {4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c^3 \sqrt {c x-1} \sqrt {c x+1}}-\frac {2^{-2 (n+3)} e^{\frac {4 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text {Gamma}\left (n+1,\frac {4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c^3 \sqrt {c x-1} \sqrt {c x+1}}-\frac {\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^{n+1}}{8 b c^3 (n+1) \sqrt {c x-1} \sqrt {c x+1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x])^n,x]

[Out]

-1/8*(Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x])^(1 + n))/(b*c^3*(1 + n)*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (Sqrt[d
 - c^2*d*x^2]*(a + b*ArcCosh[c*x])^n*Gamma[1 + n, (-4*(a + b*ArcCosh[c*x]))/b])/(2^(2*(3 + n))*c^3*E^((4*a)/b)
*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(-((a + b*ArcCosh[c*x])/b))^n) - (E^((4*a)/b)*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh
[c*x])^n*Gamma[1 + n, (4*(a + b*ArcCosh[c*x]))/b])/(2^(2*(3 + n))*c^3*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*((a + b*Arc
Cosh[c*x])/b)^n)

Rule 2212

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(-F^(g*(e - c*(f/d))))*((c
+ d*x)^FracPart[m]/(d*((-f)*g*(Log[F]/d))^(IntPart[m] + 1)*((-f)*g*Log[F]*((c + d*x)/d))^FracPart[m]))*Gamma[m
 + 1, ((-f)*g*(Log[F]/d))*(c + d*x)], x] /; FreeQ[{F, c, d, e, f, g, m}, x] &&  !IntegerQ[m]

Rule 3388

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 5556

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5952

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*
c^(m + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)], Subst[Int[x^n*Cosh[-a/b + x/b]^m*Sinh[-a/b + x/b]^
(2*p + 1), x], x, a + b*ArcCosh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[2*p + 2
, 0] && IGtQ[m, 0]

Rubi steps

\begin {align*} \int x^2 \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \, dx &=\frac {\sqrt {d-c^2 d x^2} \int x^2 \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^n \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {\sqrt {d-c^2 d x^2} \text {Subst}\left (\int (a+b x)^n \cosh ^2(x) \sinh ^2(x) \, dx,x,\cosh ^{-1}(c x)\right )}{c^3 \sqrt {-1+c x} \sqrt {1+c x}}\\ &=\frac {\sqrt {d-c^2 d x^2} \text {Subst}\left (\int \left (-\frac {1}{8} (a+b x)^n+\frac {1}{8} (a+b x)^n \cosh (4 x)\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{c^3 \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^{1+n}}{8 b c^3 (1+n) \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\sqrt {d-c^2 d x^2} \text {Subst}\left (\int (a+b x)^n \cosh (4 x) \, dx,x,\cosh ^{-1}(c x)\right )}{8 c^3 \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^{1+n}}{8 b c^3 (1+n) \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\sqrt {d-c^2 d x^2} \text {Subst}\left (\int e^{-4 x} (a+b x)^n \, dx,x,\cosh ^{-1}(c x)\right )}{16 c^3 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {\sqrt {d-c^2 d x^2} \text {Subst}\left (\int e^{4 x} (a+b x)^n \, dx,x,\cosh ^{-1}(c x)\right )}{16 c^3 \sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^{1+n}}{8 b c^3 (1+n) \sqrt {-1+c x} \sqrt {1+c x}}+\frac {4^{-3-n} e^{-\frac {4 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c^3 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {4^{-3-n} e^{\frac {4 a}{b}} \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac {4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{c^3 \sqrt {-1+c x} \sqrt {1+c x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.74, size = 181, normalized size = 0.72 \begin {gather*} -\frac {d \sqrt {\frac {-1+c x}{1+c x}} (1+c x) \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {8 \left (a+b \cosh ^{-1}(c x)\right )}{b+b n}+4^{-n} e^{-\frac {4 a}{b}} \left (-\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{b^2}\right )^{-n} \left (\left (\frac {a}{b}+\cosh ^{-1}(c x)\right )^n \Gamma \left (1+n,-\frac {4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )-e^{\frac {8 a}{b}} \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^n \Gamma \left (1+n,\frac {4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )\right )\right )}{64 c^3 \sqrt {-d (-1+c x) (1+c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x])^n,x]

[Out]

-1/64*(d*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*(a + b*ArcCosh[c*x])^n*((-8*(a + b*ArcCosh[c*x]))/(b + b*n) + ((
a/b + ArcCosh[c*x])^n*Gamma[1 + n, (-4*(a + b*ArcCosh[c*x]))/b] - E^((8*a)/b)*(-((a + b*ArcCosh[c*x])/b))^n*Ga
mma[1 + n, (4*(a + b*ArcCosh[c*x]))/b])/(4^n*E^((4*a)/b)*(-((a + b*ArcCosh[c*x])^2/b^2))^n)))/(c^3*Sqrt[-(d*(-
1 + c*x)*(1 + c*x))])

________________________________________________________________________________________

Maple [F]
time = 180.00, size = 0, normalized size = 0.00 \[\int x^{2} \left (a +b \,\mathrm {arccosh}\left (c x \right )\right )^{n} \sqrt {-c^{2} d \,x^{2}+d}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a+b*arccosh(c*x))^n*(-c^2*d*x^2+d)^(1/2),x)

[Out]

int(x^2*(a+b*arccosh(c*x))^n*(-c^2*d*x^2+d)^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arccosh(c*x))^n*(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-c^2*d*x^2 + d)*(b*arccosh(c*x) + a)^n*x^2, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arccosh(c*x))^n*(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*d*x^2 + d)*(b*arccosh(c*x) + a)^n*x^2, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{2} \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {acosh}{\left (c x \right )}\right )^{n}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b*acosh(c*x))**n*(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x**2*sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*acosh(c*x))**n, x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arccosh(c*x))^n*(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Simplification assuming sageVARc near 0Simplification assuming sageVARc near 0Simplification assuming sageV
ARc near 0S

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int x^2\,{\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^n\,\sqrt {d-c^2\,d\,x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a + b*acosh(c*x))^n*(d - c^2*d*x^2)^(1/2),x)

[Out]

int(x^2*(a + b*acosh(c*x))^n*(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________